login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A213192
G.f. satisfies: A(x) = 1 + x * sqrt( d/dx x*A(x)^4 ).
2
1, 1, 4, 25, 204, 2024, 23560, 315147, 4777932, 81249562, 1536125144, 32033803936, 731461308600, 18165906647652, 487702581895824, 14076885317410829, 434705720055275532, 14300349927653656920, 499229708336982490936, 18432449956359308918034, 717597821570439742670440
OFFSET
0,3
LINKS
FORMULA
G.f. satisfies: A(x) = 1 + x * sqrt( A(x)^4 + 4*x*A(x)^3*A'(x) ).
a(m) == 1 (mod 2) at m = 2^n-1 for n>=0, otherwise a(m) == 0 (mod 2).
a(n) ~ c * 2^n * n! / sqrt(n), where c = 1.2412292448741911566... - Vaclav Kotesovec, Aug 24 2017
EXAMPLE
G.f.: A(x) = 1 + x + 4*x^2 + 25*x^3 + 204*x^4 + 2024*x^5 + 23560*x^6 +...
Related expansions:
A(x)^4 = 1 + 4*x + 22*x^2 + 152*x^3 + 1261*x^4 + 12252*x^5 + 137370*x^6 +...
d/dx x*A(x)^4 = 1 + 8*x + 66*x^2 + 608*x^3 + 6305*x^4 + 73512*x^5 +...
(A(x)-1)^2 = x^2 + 8*x^3 + 66*x^4 + 608*x^5 + 6305*x^6 + 73512*x^7 +...
PROG
(PARI) {a(n)=local(A=1+x); for(i=1, n, A=1+x; for(i=1, n, A=1+x*deriv(x*(A+x*O(x^n))^4)^(1/2))); polcoeff(A, n)}
for(n=0, 25, print1(a(n), ", "))
CROSSREFS
Cf. A226067.
Sequence in context: A347585 A088159 A301363 * A036242 A120955 A061714
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Feb 28 2013
STATUS
approved