login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A369208
Expansion of (1/x) * Series_Reversion( x * (1-x)^2 / (1+x^2) ).
2
1, 2, 8, 38, 200, 1122, 6576, 39790, 246672, 1558658, 10001592, 64997814, 426922392, 2829624514, 18901301984, 127115260894, 859978039840, 5848754717314, 39964745880552, 274231943135686, 1888891689752680, 13055393137141282, 90517646431869328
OFFSET
0,2
FORMULA
a(n) = (1/(n+1)) * Sum_{k=0..floor(n/2)} binomial(n+1,k) * binomial(3*n-2*k+1,n-2*k).
a(n) = (1/(n+1)) *[x^n] ( 1/(1-x)^2 * (1+x^2) )^(n+1). - Seiichi Manyama, Feb 14 2024
PROG
(PARI) my(N=30, x='x+O('x^N)); Vec(serreverse(x*(1-x)^2/(1+x^2))/x)
(PARI) a(n, s=2, t=1, u=2) = sum(k=0, n\s, binomial(t*(n+1), k)*binomial((u+1)*(n+1)-s*k-2, n-s*k))/(n+1);
CROSSREFS
Cf. A370242.
Sequence in context: A364723 A372107 A266797 * A234939 A365751 A192784
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Jan 18 2024
STATUS
approved