OFFSET
0,4
COMMENTS
See A368946 for the description of the MIU formal system and the triangle of corresponding strings.
REFERENCES
Douglas R. Hofstadter, Gödel, Escher, Bach: an Eternal Golden Braid, Basic Books, 1979, pp. 33-41 and pp. 261-262.
LINKS
Paolo Xausa, Table of n, a(n) for n = 0..3670 (rows 0..7 of the triangle, flattened).
Wikipedia, MU Puzzle.
EXAMPLE
Triangle begins:
[0] 0;
[1] 1 0;
[2] 2 1 0;
[3] 4 2 1 0 1 1;
[4] 8 4 2 2 2 1 0 1 1 1 1 1 1 2 2 2;
...
MATHEMATICA
MIUStepOW3[s_] := Flatten[Map[{If[StringEndsQ[#, "1"], # <> "0", Nothing], # <> #, StringReplaceList[#, "111" -> "0"], StringReplaceList[#, "00" -> ""]}&, s]];
With[{rowmax = 5}, Map[StringCount[#, "0"]&, NestList[MIUStepOW3, {"1"}, rowmax]]]
CROSSREFS
KEYWORD
nonn,base,tabf
AUTHOR
Paolo Xausa, Jan 16 2024
STATUS
approved