OFFSET
0,4
COMMENTS
Number of zeros in row n of triangle A083093. - Reinhard Zumkeller, Jul 11 2013
LINKS
Reinhard Zumkeller, Table of n, a(n) for n = 0..1000
D. L. Wells, Residue counts modulo three for the fibonacci triangle, Appl. Fib. Numbers, Proc. 6th Int Conf Fib. Numbers, Pullman, 1994 (1996) 521-536.
FORMULA
a(n) = n + 1 - A006047(n).
EXAMPLE
When n=3 the row is 1,3,3,1 so a(3) = 2.
MAPLE
p:=proc(n) local ct, k: ct:=0: for k from 0 to n do if binomial(n, k) mod 3 = 0 then else ct:=ct+1 fi od: end: seq(n+1-p(n), n=0..83); # Emeric Deutsch
MATHEMATICA
a[n_] := Count[(Binomial[n, #] & )[Range[0, n]], _?(Divisible[#, 3] & )];
Table[a[n], {n, 0, 100}] (* Jean-François Alcover, Jan 26 2018 *)
Table[n + 1 - 2^(DigitCount[n, 3, 1])*3^(DigitCount[n, 3, 2]), {n, 0, 76}] (* Shenghui Yang, Jan 08 2025 *)
PROG
CROSSREFS
KEYWORD
AUTHOR
Ahmed Fares (ahmedfares(AT)my-deja.com), Jul 02 2001
EXTENSIONS
More terms from Emeric Deutsch, Feb 03 2005
STATUS
approved