login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A062296
a(n) = number of entries in n-th row of Pascal's triangle divisible by 3.
10
0, 0, 0, 2, 1, 0, 4, 2, 0, 8, 7, 6, 9, 6, 3, 10, 5, 0, 16, 14, 12, 16, 11, 6, 16, 8, 0, 26, 25, 24, 27, 24, 21, 28, 23, 18, 33, 30, 27, 32, 25, 18, 31, 20, 9, 40, 35, 30, 37, 26, 15, 34, 17, 0, 52, 50, 48, 52, 47, 42, 52, 44, 36, 58, 53, 48, 55, 44, 33, 52, 35, 18, 64, 56, 48, 58, 41
OFFSET
0,4
COMMENTS
Number of zeros in row n of triangle A083093. - Reinhard Zumkeller, Jul 11 2013
LINKS
D. L. Wells, Residue counts modulo three for the fibonacci triangle, Appl. Fib. Numbers, Proc. 6th Int Conf Fib. Numbers, Pullman, 1994 (1996) 521-536.
FORMULA
a(n) = n + 1 - A006047(n).
a(n) = n + 1 - A206424(n) - A227428(n). - Reinhard Zumkeller, Jul 11 2013
a(n) = n + 1 - 2^A062756(n)*3^A081603(n). - Shenghui Yang, Jan 08 2025
EXAMPLE
When n=3 the row is 1,3,3,1 so a(3) = 2.
MAPLE
p:=proc(n) local ct, k: ct:=0: for k from 0 to n do if binomial(n, k) mod 3 = 0 then else ct:=ct+1 fi od: end: seq(n+1-p(n), n=0..83); # Emeric Deutsch
MATHEMATICA
a[n_] := Count[(Binomial[n, #] & )[Range[0, n]], _?(Divisible[#, 3] & )];
Table[a[n], {n, 0, 100}] (* Jean-François Alcover, Jan 26 2018 *)
Table[n + 1 - 2^(DigitCount[n, 3, 1])*3^(DigitCount[n, 3, 2]), {n, 0, 76}] (* Shenghui Yang, Jan 08 2025 *)
PROG
(Haskell)
a062296 = sum . map ((1 -) . signum) . a083093_row
-- Reinhard Zumkeller, Jul 11 2013
CROSSREFS
KEYWORD
nonn,look,changed
AUTHOR
Ahmed Fares (ahmedfares(AT)my-deja.com), Jul 02 2001
EXTENSIONS
More terms from Emeric Deutsch, Feb 03 2005
STATUS
approved