

A062296


a(n) = number of entries in nth row of Pascal's triangle divisible by 3.


10



0, 0, 0, 2, 1, 0, 4, 2, 0, 8, 7, 6, 9, 6, 3, 10, 5, 0, 16, 14, 12, 16, 11, 6, 16, 8, 0, 26, 25, 24, 27, 24, 21, 28, 23, 18, 33, 30, 27, 32, 25, 18, 31, 20, 9, 40, 35, 30, 37, 26, 15, 34, 17, 0, 52, 50, 48, 52, 47, 42, 52, 44, 36, 58, 53, 48, 55, 44, 33, 52, 35, 18, 64, 56, 48, 58, 41
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,4


COMMENTS

a(n) = n + 1  A206424(n)  A227428(n); number of zeros in row n of triangle A083093.  Reinhard Zumkeller, Jul 11 2013


LINKS

Reinhard Zumkeller, Table of n, a(n) for n = 0..1000


FORMULA

a(n) + A006047(n) = n + 1 so a(n) = n + 1  A006047(n).


EXAMPLE

When n=3 the row is 1,3,3,1 so a(3) = 2.


MAPLE

p:=proc(n) local ct, k: ct:=0: for k from 0 to n do if binomial(n, k) mod 3 = 0 then else ct:=ct+1 fi od: end: seq(n+1p(n), n=0..83); # Emeric Deutsch


MATHEMATICA

a[n_] := Count[(Binomial[n, #] & )[Range[0, n]], _?(Divisible[#, 3] & )];
Table[a[n], {n, 0, 100}] (* JeanFrançois Alcover, Jan 26 2018 *)


PROG

(Haskell)
a062296 = sum . map ((1 ) . signum) . a083093_row
 Reinhard Zumkeller, Jul 11 2013


CROSSREFS

Cf. A006047.
Sequence in context: A122792 A138002 A261877 * A249343 A140649 A290222
Adjacent sequences: A062293 A062294 A062295 * A062297 A062298 A062299


KEYWORD

nonn,look


AUTHOR

Ahmed Fares (ahmedfares(AT)mydeja.com), Jul 02 2001


EXTENSIONS

More terms from Emeric Deutsch, Feb 03 2005


STATUS

approved



