OFFSET
0,2
COMMENTS
LINKS
Reinhard Zumkeller (terms 0..1000) & Antti Karttunen, Table of n, a(n) for n = 0..19683
R. Garfield, H. S. Wilf, The distribution of the binomial coefficients modulo p, J. Numb. Theory 41 (1) (1992) 1-5
Marcus Jaiclin, et al. Pascal's Triangle, Mod 2,3,5
D. L. Wells, Residue counts modulo three for the fibonacci triangle, Appl. Fib. Numbers, Proc. 6th Int Conf Fib. Numbers, Pullman, 1994 (1996) 521-536.
Avery Wilson, Pascal's Triangle Modulo 3, Mathematics Spectrum, 47-2 - January 2015, pp. 72-75.
FORMULA
From Antti Karttunen, Jul 27 2017: (Start)
a(n) = (3^k + 1)*2^(y-1), where y = A062756(n) and k = A081603(n). [See e.g. Wells or Wilson references.]
(End)
From David A. Corneth and Antti Karttunen, Jul 27 2017: (Start)
Based on the first formula above, we have following identities:
a(3n) = a(n).
a(3n+1) = 2*a(n).
a(9n+4) = 4*a(n).
(End)
a(n) = (1/2)*Sum_{k = 0..n} mod(C(n,k) + C(n,k)^2, 3). - Peter Bala, Dec 17 2020
EXAMPLE
Example: Rows 0-8 of Pascal's Triangle (mod 3) are:
1 So a(0) = 1
1 1 So a(1) = 2
1 2 1 So a(2) = 2
1 0 0 1 .
1 1 0 1 1 .
1 2 1 1 2 1 .
1 0 0 2 0 0 1
1 1 0 2 2 0 1 1
1 2 1 2 1 2 1 2 1
MATHEMATICA
Table[Count[Mod[Binomial[n, Range[0, n]], 3], 1], {n, 0, 99}] (* Alonso del Arte, Feb 07 2012 *)
PROG
(Haskell)
a206424 = length . filter (== 1) . a083093_row
-- Reinhard Zumkeller, Jul 11 2013
(PARI) A206424(n) = sum(k=0, n, 1==(binomial(n, k)%3)); \\ (naive way) Antti Karttunen, Jul 26 2017
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Marcus Jaiclin, Feb 07 2012
STATUS
approved