login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A117728
A117726(n)/2.
1
1, 2, 2, 2, 4, 4, 2, 4, 5, 4, 6, 4, 4, 8, 4, 4, 8, 6, 6, 8, 8, 4, 6, 8, 5, 12, 8, 4, 12, 8, 6, 8, 8, 8, 12, 10, 4, 12, 8, 8, 16, 8, 6, 12, 12, 8, 10, 8, 9, 14, 12, 8, 12, 16, 8, 16, 8, 4, 18, 8, 12, 16, 10, 8, 16, 16, 6, 16, 16, 8, 14, 12, 8, 20, 14, 12, 16, 8, 10, 16, 17, 8, 18, 16, 8, 20, 12
OFFSET
1,2
FORMULA
a(4*n) = 2 * a(n). a(4*n + 1) = A045834(n). a(4*n + 2) = A005884(n). - Michael Somos, Jul 05 2015
G.f.: (Sum_{k>0} x^(k^2 + k - 1) / (1 - x^(2*k - 1))^2) / (Sum_{k>0} x^(k*(k - 1))). - Michael Somos, Jul 05 2015
EXAMPLE
G.f. = x + 2*x^2 + 2*x^3 + 2*x^4 + 4*x^5 + 4*x^6 + 2*x^7 + 4*x^8 + 5*x^9 + ...
PROG
(PARI) {a(n) = my(A); if( n<1, 0, n--; A = x * O(x^n); polcoeff( sum(k=1, sqrtint(4*n + 9)\2, x^(k^2 + k - 2) / (1 - x^(2*k - 1))^2, A) / sum(k=1, sqrtint(4*n + 1)\2 + 1, x^(k^2 - k), A), n))}; /* Michael Somos, Jul 05 2015 */
CROSSREFS
Sequence in context: A105080 A336299 A206424 * A172309 A130453 A376690
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Apr 14 2006
STATUS
approved