OFFSET
1,1
COMMENTS
Also 4 times Kronecker's function F(n).
F(n) is the number of odd classes of binary quadratic forms ax^2+2bxy+cy^2 of discriminant b^2-ac = -n, where classes of the shape a(x^2+y^2) are counted as 1/2 and "odd" means that at least one of a and c is odd.
REFERENCES
L. Kronecker, Crelle, Vol. LVII (1860), p. 248; Werke, Vol. IV, p. 188.
C. J. Moreno and S. S. Wagstaff, Jr., Sums of Squares of Integers, Chapman and Hall, 2006, p. 43.
H. J. S. Smith, Report on the Theory of Numbers, reprinted in Vol. 1 of his Collected Math. Papers, Chelsea, NY, 1979, see pp. 323 (definition of F), 338 (g.f.).
FORMULA
G.f. for F(n): Sum_{n >= 1} F(n) q^n = (q^(1/4) / Sum_{ m=-infinity, infinity } q^( (2*m+1)^2/4 )) * Sum{ n=-infinity, infinity } q^(n^2+n-1)/(1-q^(2*n-1))^2.
MAPLE
t10:=add( q^( (2*m+1)^2/4 ), m=-20..20); t1:=series(q^(1/4)/t10, q, 100); t2:=add( q^(n^2+n-1)/(1-q^(2*n-1))^2, n=1..100): series(4*t1*t2, q, 100);
CROSSREFS
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Apr 14 2006
STATUS
approved