login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A117726
Moreno and Wagstaff's arithmetical function T(n).
2
2, 4, 4, 4, 8, 8, 4, 8, 10, 8, 12, 8, 8, 16, 8, 8, 16, 12, 12, 16, 16, 8, 12, 16, 10, 24, 16, 8, 24, 16, 12, 16, 16, 16, 24, 20, 8, 24, 16, 16, 32, 16, 12, 24, 24, 16, 20, 16, 18, 28, 24, 16, 24, 32, 16, 32, 16, 8, 36, 16, 24, 32, 20, 16, 32, 32, 12, 32, 32, 16, 28, 24, 16, 40, 28, 24
OFFSET
1,1
COMMENTS
Also 4 times Kronecker's function F(n).
F(n) is the number of odd classes of binary quadratic forms ax^2+2bxy+cy^2 of discriminant b^2-ac = -n, where classes of the shape a(x^2+y^2) are counted as 1/2 and "odd" means that at least one of a and c is odd.
REFERENCES
L. Kronecker, Crelle, Vol. LVII (1860), p. 248; Werke, Vol. IV, p. 188.
C. J. Moreno and S. S. Wagstaff, Jr., Sums of Squares of Integers, Chapman and Hall, 2006, p. 43.
H. J. S. Smith, Report on the Theory of Numbers, reprinted in Vol. 1 of his Collected Math. Papers, Chelsea, NY, 1979, see pp. 323 (definition of F), 338 (g.f.).
FORMULA
G.f. for F(n): Sum_{n >= 1} F(n) q^n = (q^(1/4) / Sum_{ m=-infinity, infinity } q^( (2*m+1)^2/4 )) * Sum{ n=-infinity, infinity } q^(n^2+n-1)/(1-q^(2*n-1))^2.
MAPLE
t10:=add( q^( (2*m+1)^2/4 ), m=-20..20); t1:=series(q^(1/4)/t10, q, 100); t2:=add( q^(n^2+n-1)/(1-q^(2*n-1))^2, n=1..100): series(4*t1*t2, q, 100);
CROSSREFS
Sequence in context: A371910 A023820 A225355 * A172307 A108039 A367013
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Apr 14 2006
STATUS
approved