login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A249343
The exponent of the highest power of 3 dividing the product of the elements on the n-th row of Pascal's triangle (A001142(n)).
9
0, 0, 0, 2, 1, 0, 4, 2, 0, 14, 10, 6, 13, 8, 3, 12, 6, 0, 28, 20, 12, 24, 15, 6, 20, 10, 0, 68, 55, 42, 58, 44, 30, 48, 33, 18, 73, 56, 39, 60, 42, 24, 47, 28, 9, 78, 57, 36, 62, 40, 18, 46, 23, 0, 136, 110, 84, 114, 87, 60, 92, 64, 36, 132, 102, 72, 107, 76, 45, 82, 50, 18, 128, 94, 60, 100, 65, 30, 72, 36, 0
OFFSET
0,4
LINKS
Jeffrey C. Lagarias and Harsh Mehta, Products of binomial coefficients and unreduced Farey fractions, arXiv:1409.4145 [math.NT], 2014.
FORMULA
a(n) = A007949(A001142(n)).
a(n) = Sum_{k=0..n} A243759(n,k).
a(n) = Sum_{i=1..n} (2*i-n-1)*v_3(i), where v_3(i) = A007949(i) is the exponent of the highest power of 3 dividing i. - Ridouane Oudra, Jun 02 2022
PROG
(PARI) allocatemem(234567890);
A249343(n) = sum(k=0, n, valuation(binomial(n, k), 3));
for(n=0, 6560, write("b249343.txt", n, " ", A249343(n)));
(Scheme)
(define (A249343 n) (add A243759 (A000217 n) (A000096 n)))
(define (add intfun lowlim uplim) (let sumloop ((i lowlim) (res 0)) (cond ((> i uplim) res) (else (sumloop (+ 1 i) (+ res (intfun i)))))))
(Haskell)
a249343 = a007949 . a001142 -- Reinhard Zumkeller, Mar 16 2015
CROSSREFS
Row sums of A243759.
Row 2 of array A249421.
Sequence in context: A138002 A261877 A062296 * A369206 A378015 A378014
KEYWORD
nonn
AUTHOR
Antti Karttunen, Oct 28 2014
STATUS
approved