login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A249347
The exponent of the highest power of 7 dividing the product of the elements on the n-th row of Pascal's triangle.
6
0, 0, 0, 0, 0, 0, 0, 6, 5, 4, 3, 2, 1, 0, 12, 10, 8, 6, 4, 2, 0, 18, 15, 12, 9, 6, 3, 0, 24, 20, 16, 12, 8, 4, 0, 30, 25, 20, 15, 10, 5, 0, 36, 30, 24, 18, 12, 6, 0, 90, 82, 74, 66, 58, 50, 42, 89, 80, 71, 62, 53, 44, 35, 88, 78, 68, 58, 48, 38, 28, 87, 76, 65, 54, 43, 32, 21, 86, 74, 62, 50, 38, 26, 14, 85, 72, 59, 46, 33, 20, 7, 84, 70, 56, 42, 28, 14, 0
OFFSET
0,8
LINKS
Jeffrey C. Lagarias and Harsh Mehta, Products of binomial coefficients and unreduced Farey fractions, arXiv:1409.4145 [math.NT], 2014.
FORMULA
a(n) = A214411(A001142(n)).
a(n) = Sum_{k=0..n} A214411(binomial(n,k)).
a(n) = Sum_{i=1..n} (2*i-n-1)*v_7(i), where v_7(i) = A214411(i) is the exponent of the highest power of 7 dividing i. - Ridouane Oudra, Jun 03 2022
PROG
(PARI)
allocatemem(234567890);
A249347(n) = sum(k=0, n, valuation(binomial(n, k), 7));
for(n=0, 2400, write("b249347.txt", n, " ", A249347(n)));
(Scheme, two alternative implementations)
(define (A249347 n) (A214411 (A001142 n)))
(define (A249347 n) (add (lambda (n) (A214411 (A007318 n))) (A000217 n) (A000096 n)))
(define (add intfun lowlim uplim) (let sumloop ((i lowlim) (res 0)) (cond ((> i uplim) res) (else (sumloop (+ 1 i) (+ res (intfun i)))))))
CROSSREFS
Row 4 of array A249421.
Sequence in context: A023448 A307337 A031055 * A284805 A225660 A031056
KEYWORD
nonn
AUTHOR
Antti Karttunen, Oct 28 2014
STATUS
approved