This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A249346 The exponent of the highest power of 6 dividing the product of the elements on the n-th row of Pascal's triangle. 5
 0, 0, 0, 0, 1, 0, 4, 0, 0, 10, 10, 4, 13, 8, 3, 0, 6, 0, 28, 20, 12, 24, 15, 6, 20, 10, 0, 16, 47, 22, 26, 0, 30, 48, 33, 18, 73, 56, 39, 40, 42, 24, 47, 28, 9, 54, 57, 16, 62, 40, 18, 46, 23, 0, 82, 32, 84, 94, 87, 44, 92, 52, 36, 0, 102, 72, 107, 76, 45, 82, 50, 18, 128, 94, 60, 100, 65, 30, 72, 36, 0 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,7 COMMENTS Sounds good with MIDI player set to FX-7. LINKS Antti Karttunen, Table of n, a(n) for n = 0..7775 FORMULA a(n) = min(A187059(n), A249343(n)). a(n) = A122841(A001142(n)). Other identities: a(n) = 0 when A249151(n) < 3. PROG (PARI) A249346(n) = { my(b, s2, s3); s2 = 0; s3 = 0; for(k=0, n, b = binomial(n, k); s2 += valuation(b, 2); s3 += valuation(b, 3)); min(s2, s3); }; for(n=0, 7775, write("b249346.txt", n, " ", A249346(n))); (Scheme, two alternative implementations) (define (A249346 n) (min (A187059 n) (A249343 n))) (define (A249346 n) (A122841 (A001142 n))) (Haskell) a249346 = a122841 . a001142  -- Reinhard Zumkeller, Mar 16 2015 CROSSREFS Minimum of terms A187059(n) and A249343(n). Cf. A001142, A122841, A249151. Sequence in context: A127319 A272626 A271910 * A035539 A178517 A049207 Adjacent sequences:  A249343 A249344 A249345 * A249347 A249348 A249349 KEYWORD nonn,hear,look AUTHOR Antti Karttunen, Oct 31 2014 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 22 10:57 EDT 2018. Contains 316437 sequences. (Running on oeis4.)