login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A249348
a(n) = (A001147(n+1)^2-1)/8, where A001147(n+1) = 3*5*...*(2n+1).
3
0, 1, 28, 1378, 111628, 13507003, 2282683528, 513603793828, 148431496416328, 53583770206294453, 23630442660975853828, 12500504167656226675078, 7812815104785141671923828, 5695542211388368278832470703, 4789950999777617722498107861328
OFFSET
0,3
COMMENTS
These are the numerators of the partial sums S(n) = Sum_{k=1..n} A000217(k)/A001147(k+1)^2 before simplification, i.e., a(n) = S(n)*A001147(n+1)^2, where A000217(n) = n(n+1)/2. The series S(n) has sum 1/8, actually S(n) = 1/8 - 1/(8*A001147(n+1)^2). (Similarly, Sum_{n=1..oo} A249354(n)/A007559(n+1)^3 = 1/9, where A249354(n) = 3n^3+3n^2+n.)
This is a subsequence of the centered 9-gonal numbers A060544, which are a subsequence of the triangular numbers A000217.
LINKS
S. Klein, A neat infinite sum ..., "Number Theory" group on LinkedIn, Oct. 2014.
FORMULA
(-n+1)*a(n) +2*n*(2*n^2-1)*a(n-1) -(n+1)*(-1+2*n)^2*a(n-2)=0. - R. J. Mathar, Oct 28 2014
MAPLE
A249348 := proc(n)
(doublefactorial(2*n+1)^2-1)/8 ;
end proc:
seq(A249348(n), n=0..20) ;
PROG
(PARI) a(n)=(prod(k=1, n, 2*k+1)^2-1)/8
CROSSREFS
Sequence in context: A091993 A213692 A118705 * A366302 A013926 A110696
KEYWORD
nonn
AUTHOR
M. F. Hasler, Oct 26 2014
EXTENSIONS
a(11)/a(12) corrected by Georg Fischer, Mar 12 2020
STATUS
approved