login
A366302
Expansion of e.g.f. 1 / (-6 + Sum_{k=1..7} exp(-k*x)).
4
1, 28, 1428, 108976, 11088924, 1410452848, 215282610348, 38335940184976, 7801807561068444, 1786227911508713008, 454397569178386774668, 127153351764004535348176, 38815768300684586111354364, 12836619471891836987050169968, 4571701128215207034965181098988, 1744488930796462320024115801858576
OFFSET
0,2
FORMULA
a(0) = 1; a(n) = Sum_{k=1..n} (-1)^(k+1) * binomial(n,k) * (1 + 2^k + ... + 7^k) * a(n-k).
MATHEMATICA
nmax = 15; CoefficientList[Series[1/(-6 + Sum[Exp[-k x], {k, 1, 7}]), {x, 0, nmax}], x] Range[0, nmax]!
a[0] = 1; a[n_] := a[n] = Sum[(-1)^(k + 1) Binomial[n, k] (1 + 2^k + 3^k + 4^k + 5^k + 6^k + 7^k) a[n - k], {k, 1, n}]; Table[a[n], {n, 0, 15}]
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Oct 06 2023
STATUS
approved