login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A366305
a(n) = Product_{k=1..n} (k^n + (k-1)^n).
2
1, 5, 315, 555713, 47705305725, 305469864195354625, 207095306530955763265880535, 20017329298655447986400838721630926977, 357361761140807273279996172600335233468472149678425, 1481824279740988988264353294673429995981921700740921435758587890625
OFFSET
1,2
FORMULA
a(n) = (n!)^n * Product_{k=1..n} (1 + (1 - 1/k)^n).
a(n) ~ n!^n * d^n, where d = exp(Integral_{x=0..1} log(1 + exp(-1/x)) dx) = 1.14183186235785012136459060138978468902610644657603999829892450823456733...
a(n) ~ (2*Pi)^(n/2) * d^n * n^(n*(2*n+1)/2) / exp(n^2 - 1/12).
MATHEMATICA
Table[Product[k^n + (k-1)^n, {k, 1, n}], {n, 1, 10}]
CROSSREFS
KEYWORD
nonn
AUTHOR
Vaclav Kotesovec, Oct 06 2023
STATUS
approved