login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A369203
a(n) is the first number that has exactly n anagrams that each have exactly n prime divisors, counted by multiplicity.
1
2, 15, 117, 135, 1224, 10023, 10026, 50688, 104445, 100368, 1012257, 1002258, 1034568, 10027899, 10024569, 100002789, 100234566, 100236789, 1000024569, 1012566789, 10000224468, 10002367899, 10002345678, 100012344588, 100012234689, 100223456778, 1000012457889, 1002345566778
OFFSET
1,1
COMMENTS
a(n) is the first number that has n anagrams k such that A001222(k) = n.
Does 9 divide a(n) for n > 6? - David A. Corneth, Jan 16 2024
EXAMPLE
a(4) = 135 is a term because 135 has 4 anagrams having 4 prime divisors, counted by multiplicity: 135 = 3^3 * 5, 315 = 3^2 * 5 * 7, 351 = 3^3 * 13 and 513 == 3^3 * 19, and no number < 135 works.
a(6) != 2367 because 2367 has exactly 7 anagrams with each having exactly 6 prime divisors (namely 2673, 3276, 3726, 6237, 6372, 6732, 7236). - David A. Corneth, Jan 16 2024
MAPLE
f:= proc(n) # numbers k such that n has k anagrams with Omega = k
local L, W, WS, V, d, w, x, i;
L:= convert(n, base, 10); d:= nops(L);
L:= select(t -> t[-1] <> 0, combinat:-permute(L));
L:= map(t-> add(t[i]*10^(i-1), i=1..d), L);
W:= map(t -> numtheory:-bigomega(t), L);
WS:= convert(W, set);
for x in WS do V[x]:= 0 od;
for x in W do V[x]:= V[x]+1 od;
select(x -> V[x] = x, WS);
end proc:
g:= proc(xin, d, n) # first anagrams with n digits starting xin, all other digits >= d
option remember;
local i;
if 1 + ilog10(xin) = n then return xin fi;
seq(procname(10*xin+i, i, n), i=d..9)
end proc:
h:= proc(n) # first anagrams with n digits
local i, j;
seq(seq(g(i*10^j, i, n), j=n-1..0, -1), i=1..9)
end proc:
V:= 'V': m:= 0:
for d from 1 to 9 do
for x in h(d) do
for y in f(x) do
if not assigned(V[y]) then V[y]:= x: m:= max(m, y) fi
od od od:
seq(V[y], y=1..m);
PROG
(Python)
from collections import Counter
from sympy import primeomega as W
from sympy.utilities.iterables import multiset_permutations as MP
from itertools import combinations_with_replacement, count, islice
def counteq(n):
c = Counter(W(int("".join(p))) for p in MP(str(n)) if p[0]!='0')
return [i for i in c if c[i] == i]
def agen(): # generator of terms
adict, n = dict(), 1
for d in count(len(str(2**n))):
for f in "123456789":
for r in combinations_with_replacement("0123456789", d-1):
k = int(f+"".join(r))
for v in counteq(k):
if v not in adict:
adict[v] = k
while n in adict: yield adict[n]; n += 1
print(list(islice(agen(), 8))) # Michael S. Branicky, Jan 16 2024
CROSSREFS
Cf. A001222, A369184. All terms are in A179239.
Sequence in context: A052861 A300910 A161937 * A074621 A341929 A185758
KEYWORD
nonn,base
AUTHOR
Robert Israel, Jan 15 2024
EXTENSIONS
More terms from David A. Corneth, Jan 16 2024
STATUS
approved