login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A300910
Expansion of e.g.f. 1/(1 - x)^(x/(1 - x)^2).
0
1, 0, 2, 15, 116, 1070, 11754, 149436, 2145296, 34193736, 598061160, 11377384920, 233732130312, 5153974126704, 121354505626704, 3037419444974040, 80497938647953920, 2251124265581428800, 66225476356207660224, 2044005966844402035456, 66025689709572751040640, 2227221130525199246067840, 78301158190416233445985920
OFFSET
0,3
COMMENTS
Exponential transform of A006675.
LINKS
FORMULA
E.g.f.: A(x) = exp(B(x)*C(x)), where B(x) is the g.f. of the sequence {0, 1, 2, 3, 4, 5, ...} and C(x) is the g.f. of the sequence {0, 1, 1/2, 1/3, 1/4, 1/5, ...}.
a(0) = 1; a(n) = Sum_{k=1..n} k*k!*(H(k)-1)*binomial(n-1,k-1)*a(n-k), where H(k) is the k-th harmonic number.
EXAMPLE
1/(1 - x)^(x/(1 - x)^2) = 1 + 2*x^2/2! + 15*x^3/3! + 116*x^4/4! + 1070*x^5/5! + 11754*x^6/6! + 149436*x^7/7! + ...
MAPLE
a:=series(1/(1-x)^(x/(1-x)^2), x=0, 23): seq(n!*coeff(a, x, n), n=0..22); # Paolo P. Lava, Mar 26 2019
MATHEMATICA
nmax = 22; CoefficientList[Series[1/(1 - x)^(x/(1 - x)^2), {x, 0, nmax}], x] Range[0, nmax]!
a[n_] := a[n] = Sum[k k! (HarmonicNumber[k] - 1) Binomial[n - 1, k - 1] a[n - k], {k, 1, n}]; a[0] = 1; Table[a[n], {n, 0, 22}]
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Mar 15 2018
STATUS
approved