login
A370242
Coefficient of x^n in the expansion of ( 1/(1-x)^2 * (1+x^2) )^n.
1
1, 2, 12, 74, 480, 3202, 21756, 149746, 1040640, 7285538, 51307212, 363057114, 2579270304, 18385404546, 131429288828, 941857237474, 6764184258560, 48671099313730, 350799656912652, 2532218940625642, 18303373070813280, 132462237913391362, 959699439413581692
OFFSET
0,2
FORMULA
a(n) = Sum_{k=0..floor(n/2)} binomial(n,k) * binomial(3*n-2*k-1,n-2*k).
The g.f. exp( Sum_{k>=1} a(k) * x^k/k ) has integer coefficients and equals (1/x) * Series_Reversion( x * (1-x)^2 / (1+x^2) ). See A369208.
PROG
(PARI) a(n, s=2, t=1, u=2) = sum(k=0, n\s, binomial(t*n, k)*binomial((u+1)*n-s*k-1, n-s*k));
CROSSREFS
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Feb 13 2024
STATUS
approved