login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A370241
Expansion of Sum_{n>=0} Product_{k=0..n} (x^k*(1+x)^(n-k) + x^(n-k)*(1+x)^k).
1
3, 6, 15, 36, 98, 258, 677, 1830, 5006, 13340, 35215, 95702, 264851, 717760, 1894473, 5031846, 13788409, 38375030, 105005017, 279236168, 734728565, 1967715202, 5416631023, 15061949148, 41271428388, 110250824636, 289840310574, 766277436248, 2072808806434, 5730605191220
OFFSET
0,1
LINKS
FORMULA
G.f. A(x) = Sum_{n>=0} a(n)*x^n satisfies the following formulas.
(1) A(x) = Sum_{n>=0} Product_{k=0..n} (x^k*(1+x)^(n-k) + x^(n-k)*(1+x)^k).
(2) A(x) = Sum_{n>=0} (1+x)^(n*(n+1)) * Product_{k=0..n} ((x/(1+x))^k + (x/(1+x))^(n-k)).
(3) A(x) = Sum_{n>=0} x^(n*(n+1)/2) * (1+x)^(n*(n+1)/2) * Product_{k=0..n} (1 + (x/(1+x))^(n-2*k)).
(4) A(x/(1-x)) = Sum_{n>=0} 1/(1-x)^(n*(n+1)) * Product_{k=0..n} (x^k + x^(n-k)).
EXAMPLE
G.f.: A(x) = 3 + 6*x + 15*x^2 + 36*x^3 + 98*x^4 + 258*x^5 + 677*x^6 + 1830*x^7 + 5006*x^8 + 13340*x^9 + 35215*x^10 + 95702*x^11 + 264851*x^12 + ...
where
A(x) = (1 + 1) + ((1+x) + x)*(x + (1+x)) + ((1+x)^2 + x^2)*(x*(1+x) + x*(1+x))*(x^2 + (1+x)^2) + ((1+x)^3 + x^3)*(x*(1+x)^2 + x^2*(1+x))*(x^2*(1+x) + x*(1+x)^2)*(x^3 + (1+x)^3) + ((1+x)^4 + x^4)*(x*(1+x)^3 + x^3*(1+x))*(x^2*(1+x)^2 + x^2*(1+x)^2)*(x^3*(1+x) + x*(1+x)^3)*(x^4 + (1+x)^4) + ...
SPECIFIC VALUES.
A(1/5) = 5.4216712041652671338354486...
A(1/4) = Sum_{n>=0} A369676(n)/4^(n*(n+1)) = 7.1437109433775269577074586...
A(1/3) = Sum_{n>=0} A369675(n)/3^(n*(n+1)) = 19.589361786409617133535937...
A(-1/3) = 1.9743720303058511269360725...
Although the g.f. A(x) diverges at x = -1/2, it may be evaluated formally as
A(-1/2) = Sum_{n>=0} (-1)^n * 2 / 16^(n^2) = 1.875030517549021169...
PROG
(PARI) {a(n) = my(A = sum(m=0, n+1, prod(k=0, m, x^k*(1+x)^(m-k) + x^(m-k)*(1+x)^k +x*O(x^n)) )); polcoeff(A, n)}
for(n=0, 40, print1(a(n), ", "))
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Feb 13 2024
STATUS
approved