OFFSET
0,3
FORMULA
D-finite with recurrence a(n) = (2*a(n - 1) + 3*a(n - 2))*(n + 1)/(n + 3) for n >= 3.
a(n) = (-1)^n*hypergeom([1/2, -2 - n], [2], 4).
a(n) ~ (3^(n + 7/2)*(16*n + 11))/(128*sqrt(Pi)*(n + 2)^(5/2)).
G.f.: (M(x) - 1) / (x + x^2) where M(x) is the g.f. of A001006. - Werner Schulte, Jan 05 2025
MAPLE
gf := (1 - 2*x - sqrt((1 - 3*x)/(1 + x)))/(2*x^3): ser := series(gf, x, 36):
seq(coeff(ser, x, n), n = 0..30);
a := proc(n) option remember; `if`(n < 3, [1, 1, 3][n + 1],
((2*a(n - 1) + 3*a(n - 2))*(n + 1))/(n + 3)) end: seq(a(n), n=0..30);
MATHEMATICA
a[n_] := (-1)^n*HypergeometricPFQ[{1/2, -2 - n}, {2}, 4]
Table[a[n], {n, 0, 30}]
PROG
CROSSREFS
KEYWORD
nonn,easy,changed
AUTHOR
Peter Luschny, Apr 18 2021
STATUS
approved