login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A342912
a(n) = [x^n] (1 - 2*x - sqrt((1 - 3*x)/(1 + x)))/(2*x^3).
2
1, 1, 3, 6, 15, 36, 91, 232, 603, 1585, 4213, 11298, 30537, 83097, 227475, 625992, 1730787, 4805595, 13393689, 37458330, 105089229, 295673994, 834086421, 2358641376, 6684761125, 18985057351, 54022715451, 154000562758, 439742222071, 1257643249140, 3602118427251
OFFSET
0,3
FORMULA
D-finite with recurrence a(n) = (2*a(n - 1) + 3*a(n - 2))*(n + 1)/(n + 3) for n >= 3.
a(n) = (-1)^n*hypergeom([1/2, -2 - n], [2], 4).
a(n) ~ (3^(n + 7/2)*(16*n + 11))/(128*sqrt(Pi)*(n + 2)^(5/2)).
G.f.: (M(x) - 1) / (x + x^2) where M(x) is the g.f. of A001006. - Werner Schulte, Jan 05 2025
MAPLE
gf := (1 - 2*x - sqrt((1 - 3*x)/(1 + x)))/(2*x^3): ser := series(gf, x, 36):
seq(coeff(ser, x, n), n = 0..30);
a := proc(n) option remember; `if`(n < 3, [1, 1, 3][n + 1],
((2*a(n - 1) + 3*a(n - 2))*(n + 1))/(n + 3)) end: seq(a(n), n=0..30);
MATHEMATICA
a[n_] := (-1)^n*HypergeometricPFQ[{1/2, -2 - n}, {2}, 4]
Table[a[n], {n, 0, 30}]
PROG
(Python)
def rnum():
a, b, n = 1, 3, 3
yield 1
yield 1
while True:
yield b
n += 1
a, b = b, (n*(3*a + 2*b))//(n + 2)
A342912 = rnum()
print([next(A342912) for _ in range(31)])
CROSSREFS
The diagonal sums of the Motzkin triangle A064189 (with the Motzkin numbers A001006 as first column), the row sums of A020474, and a shifted version of the Riordan numbers A005043.
Sequence in context: A174297 A005043 A099323 * A370241 A058534 A063778
KEYWORD
nonn,easy,changed
AUTHOR
Peter Luschny, Apr 18 2021
STATUS
approved