login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A342911
T(n, k) = Sum_{j=1..k} (1 + 2*cos(j*Pi/(k + 1)))^n for n > 0, T(0, 0) = 1. Triangle read by rows, T(n, k) for 0 <= k <= n.
0
1, 0, 1, 0, 1, 4, 0, 1, 8, 15, 0, 1, 16, 35, 54, 0, 1, 32, 83, 134, 185, 0, 1, 64, 199, 340, 481, 622, 0, 1, 128, 479, 872, 1265, 1658, 2051, 0, 1, 256, 1155, 2254, 3361, 4468, 5575, 6682, 0, 1, 512, 2787, 5854, 8993, 12132, 15271, 18410, 21549
OFFSET
0,6
EXAMPLE
Triangle starts:
[0] 1
[1] 0, 1
[2] 0, 1, 4
[3] 0, 1, 8, 15
[4] 0, 1, 16, 35, 54
[5] 0, 1, 32, 83, 134, 185
[6] 0, 1, 64, 199, 340, 481, 622
[7] 0, 1, 128, 479, 872, 1265, 1658, 2051
[8] 0, 1, 256, 1155, 2254, 3361, 4468, 5575, 6682
[9] 0, 1, 512, 2787, 5854, 8993, 12132, 15271, 18410, 21549
MAPLE
T := (n, k) -> `if`(n=0, 1, add((1+2*cos(j*Pi/(k+1)))^n, j=1..k)):
seq(seq(simplify(T(n, k)), k=0..n), n=0..8);
CROSSREFS
Sequence in context: A355174 A059678 A079642 * A221483 A121408 A186761
KEYWORD
nonn,tabl
AUTHOR
Peter Luschny, Mar 28 2021
STATUS
approved