login
A342911
T(n, k) = Sum_{j=1..k} (1 + 2*cos(j*Pi/(k + 1)))^n for n > 0, T(0, 0) = 1. Triangle read by rows, T(n, k) for 0 <= k <= n.
0
1, 0, 1, 0, 1, 4, 0, 1, 8, 15, 0, 1, 16, 35, 54, 0, 1, 32, 83, 134, 185, 0, 1, 64, 199, 340, 481, 622, 0, 1, 128, 479, 872, 1265, 1658, 2051, 0, 1, 256, 1155, 2254, 3361, 4468, 5575, 6682, 0, 1, 512, 2787, 5854, 8993, 12132, 15271, 18410, 21549
OFFSET
0,6
EXAMPLE
Triangle starts:
[0] 1
[1] 0, 1
[2] 0, 1, 4
[3] 0, 1, 8, 15
[4] 0, 1, 16, 35, 54
[5] 0, 1, 32, 83, 134, 185
[6] 0, 1, 64, 199, 340, 481, 622
[7] 0, 1, 128, 479, 872, 1265, 1658, 2051
[8] 0, 1, 256, 1155, 2254, 3361, 4468, 5575, 6682
[9] 0, 1, 512, 2787, 5854, 8993, 12132, 15271, 18410, 21549
MAPLE
T := (n, k) -> `if`(n=0, 1, add((1+2*cos(j*Pi/(k+1)))^n, j=1..k)):
seq(seq(simplify(T(n, k)), k=0..n), n=0..8);
CROSSREFS
Sequence in context: A355174 A059678 A079642 * A221483 A121408 A186761
KEYWORD
nonn,tabl
AUTHOR
Peter Luschny, Mar 28 2021
STATUS
approved