login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A342908
Irregular triangular array of coefficients of the cd-index of the symmetric group S_n (or Boolean algebra B_n), n>=1.
1
1, 1, 1, 1, 1, 2, 2, 1, 3, 5, 3, 4, 1, 4, 9, 9, 4, 12, 10, 12, 1, 5, 14, 19, 14, 5, 25, 35, 42, 18, 35, 25, 34, 1, 6, 20, 34, 34, 20, 6, 44, 84, 100, 72, 140, 100, 28, 72, 84, 44, 136, 112, 112, 136, 1, 7, 27, 55, 69, 55, 27, 7, 70, 168, 198, 196, 378, 268, 126, 324, 378, 198, 40, 126, 196, 168, 70, 364, 504, 504, 612, 256, 420, 504, 256, 504, 364, 496
OFFSET
1,6
COMMENTS
Equivalently, the cd-index of the face lattice of the (n-1)-dimensional simplex.
These polynomials encode the numbers given in A335845. The row lengths are A000045(n). The row sums are A000111(n).
REFERENCES
R. P. Stanley, Enumerative Combinatorics, Vol I, second edition, page 54 and section 3.17.
LINKS
Margaret M. Bayer, The cd-Index: A Survey, arXiv:1901.04939 [math.CO], 2019.
EXAMPLE
1,
1,
1, 1,
1, 2, 2,
1, 3, 5, 3, 4,
1, 4, 9, 9, 4, 12, 10, 12,
1, 5, 14, 19, 14, 5, 25, 35, 42, 18, 35, 25, 34
The terms of the polynomials are ordered lexicographically. For example, row 5 represents the polynomial: c^4 + 3c^2d + 5cdc + 3dc^2 + 4d^2.
MATHEMATICA
Join[{{1}}, Table[h[list_]:=(-1)^(Length[list]+1)Apply[Multinomial, list]; g[S_]:=Abs[Total[Map[h, Map[Differences, Map[Prepend[#, 0]&, Map[Append[#, nn]&, Subsets[S]]]]]]]; rhs=Drop[Map[g, Subsets[Range[nn-1]]], -2^(nn-2)]; Clear[c, d]; fib=Reverse[Map[#/.{2->d, 1->c}&, Level[Map[Permutations, IntegerPartitions[nn-1, nn-1, {1, 2}]], {2}]]]; c:={{a}, {b}}; d:={{a, b}, {b, a}}; f[list1_, list2_]:=Level[Table[Table[Join[list1[[i]], list2[[k]]], {i, 1, Length[list1]}], {k, 1, Length[list2]}], {2}]; rr=Table[Map[Fold[f, #[[1]], Rest[#]]&, fib][[i]]->Subscript[x, i], {i, 1, Fibonacci[nn]}]; eqn[list_]:=Total[Select[Map[Fold[f, #[[1]], Rest[#]]&, fib], MemberQ[#, list]&]/.rr]==FromDigits[Part[rhs, Flatten[Position[charmon=Drop[Map[Table[If[MemberQ[#, i], b, a], {i, 1, nn-1}]&, Subsets[Range[nn-1]]], -2^(nn-2)], list]]]]; charmon=Drop[Map[Table[If[MemberQ[#, i], b, a], {i, 1, nn-1}]&, Subsets[Range[nn-1]]], -2^(nn-2)]; Table[Subscript[x, i], {i, 1, Fibonacci[nn]}]/.Flatten[Solve[Map[eqn[#]&, charmon]]], {nn, 2, 10}]]//Flatten
CROSSREFS
KEYWORD
nonn,tabf
AUTHOR
Geoffrey Critzer, Mar 28 2021
STATUS
approved