OFFSET
1,6
COMMENTS
REFERENCES
R. P. Stanley, Enumerative Combinatorics, Vol I, second edition, page 54 and section 3.17.
LINKS
Margaret M. Bayer, The cd-Index: A Survey, arXiv:1901.04939 [math.CO], 2019.
EXAMPLE
1,
1,
1, 1,
1, 2, 2,
1, 3, 5, 3, 4,
1, 4, 9, 9, 4, 12, 10, 12,
1, 5, 14, 19, 14, 5, 25, 35, 42, 18, 35, 25, 34
The terms of the polynomials are ordered lexicographically. For example, row 5 represents the polynomial: c^4 + 3c^2d + 5cdc + 3dc^2 + 4d^2.
MATHEMATICA
Join[{{1}}, Table[h[list_]:=(-1)^(Length[list]+1)Apply[Multinomial, list]; g[S_]:=Abs[Total[Map[h, Map[Differences, Map[Prepend[#, 0]&, Map[Append[#, nn]&, Subsets[S]]]]]]]; rhs=Drop[Map[g, Subsets[Range[nn-1]]], -2^(nn-2)]; Clear[c, d]; fib=Reverse[Map[#/.{2->d, 1->c}&, Level[Map[Permutations, IntegerPartitions[nn-1, nn-1, {1, 2}]], {2}]]]; c:={{a}, {b}}; d:={{a, b}, {b, a}}; f[list1_, list2_]:=Level[Table[Table[Join[list1[[i]], list2[[k]]], {i, 1, Length[list1]}], {k, 1, Length[list2]}], {2}]; rr=Table[Map[Fold[f, #[[1]], Rest[#]]&, fib][[i]]->Subscript[x, i], {i, 1, Fibonacci[nn]}]; eqn[list_]:=Total[Select[Map[Fold[f, #[[1]], Rest[#]]&, fib], MemberQ[#, list]&]/.rr]==FromDigits[Part[rhs, Flatten[Position[charmon=Drop[Map[Table[If[MemberQ[#, i], b, a], {i, 1, nn-1}]&, Subsets[Range[nn-1]]], -2^(nn-2)], list]]]]; charmon=Drop[Map[Table[If[MemberQ[#, i], b, a], {i, 1, nn-1}]&, Subsets[Range[nn-1]]], -2^(nn-2)]; Table[Subscript[x, i], {i, 1, Fibonacci[nn]}]/.Flatten[Solve[Map[eqn[#]&, charmon]]], {nn, 2, 10}]]//Flatten
CROSSREFS
KEYWORD
nonn,tabf
AUTHOR
Geoffrey Critzer, Mar 28 2021
STATUS
approved