login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A106198
Triangle, columns = successive binomial transforms of Fibonacci numbers.
1
1, 1, 1, 2, 2, 1, 3, 5, 3, 1, 5, 13, 10, 4, 1, 8, 34, 35, 17, 5, 1, 13, 89, 125, 75, 26, 6, 1, 21, 233, 450, 338, 139, 37, 7, 1, 34, 610, 1625, 1541, 757, 233, 50, 8, 1
OFFSET
0,4
COMMENTS
Column 0 = Fibonacci numbers, column 1 = odd-indexed Fibonacci numbers (first binomial transform of 1, 1, 2, 3, 5, ...); column 2 = second binomial transform of Fibonacci numbers, etc.
FORMULA
Offset column k = k-th binomial transform of the Fibonacci numbers, given leftmost column = Fibonacci numbers.
EXAMPLE
First few rows of the triangle are:
1;
1, 1;
2, 2, 1;
3, 5, 3, 1;
5, 13, 10, 4, 1;
8, 34, 35, 17, 5, 1;
13, 89, 125, 75, 26, 6, 1;
21, 233, 450, 338, 139, 37, 7, 1;
...
Column 2 = A081567, second binomial transform of Fibonacci numbers: 1, 3, 10, 35, 125, ...
MAPLE
with(combinat);
T:= proc(n, k) option remember;
if k=0 then fibonacci(n+1)
else add( binomial(n-k, j)*fibonacci(j+1)*k^(n-k-j), j=0..n-k)
fi; end:
seq(seq(T(n, k), k=0..n), n=0..10); # G. C. Greubel, Dec 11 2019
MATHEMATICA
Table[If[k==0, Fibonacci[n+1], Sum[Binomial[n-k, j]*Fibonacci[j+1]*k^(n-k-j), {j, 0, n-k}]], {n, 0, 10}, {k, 0, n}]//Flatten (* G. C. Greubel, Dec 11 2019 *)
PROG
(PARI) T(n, k) = if(k==0, fibonacci(n+1), sum(j=0, n-k, binomial(n-k, j)*fibonacci( j+1)*k^(n-k-j)) ); \\ G. C. Greubel, Dec 11 2019
(Magma)
function T(n, k)
if k eq 0 then return Fibonacci(n+1);
else return (&+[Binomial(n-k, j)*Fibonacci(j+1)*k^(n-k-j): j in [0..n-k]]);
end if; return T; end function;
[T(n, k): k in [0..n], n in [0..10]]; // G. C. Greubel, Dec 11 2019
(Sage)
@CachedFunction
def T(n, k):
if (k==0): return fibonacci(n+1)
else: return sum(binomial(n-k, j)*fibonacci(j+1)*k^(n-k-j) for j in (0..n-k))
[[T(n, k) for k in (0..n)] for n in (0..10)] # G. C. Greubel, Dec 11 2019
(GAP)
T:= function(n, k)
if k=0 then return Fibonacci(n+1);
else return Sum([0..n-k], j-> Binomial(n-k, j)*Fibonacci(j+1)*k^(n-k-j));
fi; end;
Flat(List([0..10], n-> List([0..n], k-> T(n, k) ))); # G. C. Greubel, Dec 11 2019
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Gary W. Adamson, Apr 24 2005
STATUS
approved