login
A342914
Number of grid points covered by a truncated triangle drawn on the hexagonal lattice with the short sides having length n and the long sides length 2*n.
1
1, 12, 36, 73, 123, 186, 262, 351, 453, 568, 696, 837, 991, 1158, 1338, 1531, 1737, 1956, 2188, 2433, 2691, 2962, 3246, 3543, 3853, 4176, 4512, 4861, 5223, 5598, 5986, 6387, 6801, 7228, 7668, 8121, 8587, 9066, 9558, 10063, 10581, 11112, 11656, 12213, 12783, 13366
OFFSET
0,2
COMMENTS
The shapes can be constructed using compass and straightedge. a(n) identical circles must be drawn to create a truncated triangle whose shortest side is n radius lengths. See illustrations of the initial terms in the links.
FORMULA
a(n) = (13*n^2 + 9*n + 2)/2.
a(n) = A000217(4*n+1) - 3*A000217(n). - Andrew Howroyd, Apr 01 2021
G.f.: (1 + 9*x + 3*x^2)/(1 - x)^3. - Stefano Spezia, Apr 01 2021
EXAMPLE
a(1) = 12, a(2) = 36:
* * * * *
* * * * * * *
* * * * * * * * *
* * * * * * * * *
* * * * * * *
* * * * * *
* * * * *
MATHEMATICA
CoefficientList[Series[(1+9x+3x^2)/(1-x)^3, {x, 0, 50}], x] (* or *) LinearRecurrence[{3, -3, 1}, {1, 12, 36}, 50] (* Harvey P. Dale, Apr 08 2023 *)
PROG
(PARI) a(n) = (13*n^2+9*n+2)/2 \\ Andrew Howroyd, Apr 01 2021
CROSSREFS
Cf. A000217, A003215 (regular hexagon).
Sequence in context: A043920 A371912 A049598 * A152135 A080562 A212963
KEYWORD
nonn,easy
AUTHOR
Mert Aydemir, Mar 31 2021
STATUS
approved