login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = [x^n] (1 - 2*x - sqrt((1 - 3*x)/(1 + x)))/(2*x^3).
2

%I #20 Jan 05 2025 15:48:04

%S 1,1,3,6,15,36,91,232,603,1585,4213,11298,30537,83097,227475,625992,

%T 1730787,4805595,13393689,37458330,105089229,295673994,834086421,

%U 2358641376,6684761125,18985057351,54022715451,154000562758,439742222071,1257643249140,3602118427251

%N a(n) = [x^n] (1 - 2*x - sqrt((1 - 3*x)/(1 + x)))/(2*x^3).

%F D-finite with recurrence a(n) = (2*a(n - 1) + 3*a(n - 2))*(n + 1)/(n + 3) for n >= 3.

%F a(n) = (-1)^n*hypergeom([1/2, -2 - n], [2], 4).

%F a(n) ~ (3^(n + 7/2)*(16*n + 11))/(128*sqrt(Pi)*(n + 2)^(5/2)).

%F G.f.: (M(x) - 1) / (x + x^2) where M(x) is the g.f. of A001006. - _Werner Schulte_, Jan 05 2025

%p gf := (1 - 2*x - sqrt((1 - 3*x)/(1 + x)))/(2*x^3): ser := series(gf, x, 36):

%p seq(coeff(ser, x, n), n = 0..30);

%p a := proc(n) option remember; `if`(n < 3, [1, 1, 3][n + 1],

%p ((2*a(n - 1) + 3*a(n - 2))*(n + 1))/(n + 3)) end: seq(a(n), n=0..30);

%t a[n_] := (-1)^n*HypergeometricPFQ[{1/2, -2 - n}, {2}, 4]

%t Table[a[n], {n, 0, 30}]

%o (Python)

%o def rnum():

%o a, b, n = 1, 3, 3

%o yield 1

%o yield 1

%o while True:

%o yield b

%o n += 1

%o a, b = b, (n*(3*a + 2*b))//(n + 2)

%o A342912 = rnum()

%o print([next(A342912) for _ in range(31)])

%Y The diagonal sums of the Motzkin triangle A064189 (with the Motzkin numbers A001006 as first column), the row sums of A020474, and a shifted version of the Riordan numbers A005043.

%K nonn,easy,changed

%O 0,3

%A _Peter Luschny_, Apr 18 2021