login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A370244
Coefficient of x^n in the expansion of ( 1/(1-x) * (1+x^2)^3 )^n.
1
1, 1, 9, 37, 221, 1176, 6759, 38368, 222189, 1290367, 7551534, 44367918, 261789647, 1549582126, 9198837384, 54740021712, 326445873389, 1950448508265, 11673082484595, 69965814023259, 419923664517546, 2523379461715576, 15180084331541402, 91411979525372616
OFFSET
0,3
FORMULA
a(n) = Sum_{k=0..floor(n/2)} binomial(3*n,k) * binomial(2*n-2*k-1,n-2*k).
The g.f. exp( Sum_{k>=1} a(k) * x^k/k ) has integer coefficients and equals (1/x) * Series_Reversion( x * (1-x) / (1+x^2)^3 ). See A369262.
PROG
(PARI) a(n, s=2, t=3, u=1) = sum(k=0, n\s, binomial(t*n, k)*binomial((u+1)*n-s*k-1, n-s*k));
CROSSREFS
Cf. A369262.
Sequence in context: A364700 A199894 A232258 * A370269 A026686 A076174
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Feb 13 2024
STATUS
approved