login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A370246
Coefficient of x^n in the expansion of ( 1/(1-x) * (1+x^3) )^n.
0
1, 1, 3, 13, 51, 201, 813, 3333, 13779, 57361, 240153, 1010109, 4264989, 18066777, 76745763, 326796213, 1394494803, 5961639969, 25528971369, 109482236013, 470145451401, 2021360463849, 8700225608583, 37484437325157, 161647475666301, 697673760945201
OFFSET
0,3
FORMULA
a(n) = Sum_{k=0..floor(n/3)} binomial(n,k) * binomial(2*n-3*k-1,n-3*k).
The g.f. exp( Sum_{k>=1} a(k) * x^k/k ) has integer coefficients and equals (1/x) * Series_Reversion( x * (1-x) / (1+x^3) ). See A071969.
PROG
(PARI) a(n, s=3, t=1, u=1) = sum(k=0, n\s, binomial(t*n, k)*binomial((u+1)*n-s*k-1, n-s*k));
CROSSREFS
Sequence in context: A101052 A016064 A163774 * A370272 A304629 A301458
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Feb 13 2024
STATUS
approved