login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A370249
Coefficient of x^n in the expansion of ( 1/(1-x)^2 * (1+x^3)^2 )^n.
1
1, 2, 10, 62, 394, 2552, 16810, 112114, 754698, 5116832, 34891260, 239036470, 1644001546, 11344059092, 78497737370, 544507428962, 3785080540682, 26360971309824, 183895618774084, 1284778549054704, 8988079638054044, 62955181189933276, 441442177486335002
OFFSET
0,2
FORMULA
a(n) = Sum_{k=0..floor(n/3)} binomial(2*n,k) * binomial(3*n-3*k-1,n-3*k).
The g.f. exp( Sum_{k>=1} a(k) * x^k/k ) has integer coefficients and equals (1/x) * Series_Reversion( x * (1-x)^2 / (1+x^3)^2 ). See A369267.
PROG
(PARI) a(n, s=3, t=2, u=2) = sum(k=0, n\s, binomial(t*n, k)*binomial((u+1)*n-s*k-1, n-s*k));
CROSSREFS
Sequence in context: A352277 A155626 A092165 * A370275 A304443 A379084
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Feb 13 2024
STATUS
approved