login
A092165
Let M = 2 X 2 matrix [ 1 2 / 5 4 ]; a(n) = (1,2) entry of M^n.
3
2, 10, 62, 370, 2222, 13330, 79982, 479890, 2879342, 17276050, 103656302, 621937810, 3731626862, 22389761170, 134338567022, 806031402130, 4836188412782, 29017130476690, 174102782860142, 1044616697160850, 6267700182965102, 37606201097790610, 225637206586743662
OFFSET
1,1
FORMULA
a(n) = (2*6^n - 2*(-1)^n)/7.
a(n) = A092164(n) -(-1)^n.
From R. J. Mathar, Apr 20 2009: (Start)
a(n) = 5*a(n-1) + 6*a(n-2) = 2*A015540(n).
G.f.: 2*x/((1+x)*(1-6*x)). (End)
MATHEMATICA
Table[ MatrixPower[{{1, 2}, {5, 4}}, n][[1, 2]], {n, 20}] (* Robert G. Wilson v, Apr 22 2004 *)
LinearRecurrence[{5, 6}, {2, 10}, 25] (* Vincenzo Librandi, Jul 21 2015 *)
PROG
(Magma) [(2*6^n - 2*(-1)^n)/7: n in [1..30]]; // Vincenzo Librandi, Jul 21 2015
CROSSREFS
KEYWORD
nonn
AUTHOR
Jun Mizuki (suzuki32(AT)sanken.osaka-u.ac.jp), Apr 01 2004
EXTENSIONS
Edited by Robert G. Wilson v, Apr 22 2004
More terms from Vincenzo Librandi, Jul 21 2015
STATUS
approved