login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A304443
Coefficient of x^n in Product_{k>=1} (1+x^k)^(2*n).
4
1, 2, 10, 62, 394, 2562, 16966, 113794, 770442, 5254334, 36042250, 248403586, 1718732998, 11931569028, 83064794746, 579696375972, 4054279504266, 28408328186508, 199390547044342, 1401564307833908, 9865190079554954, 69522550703432476, 490484539061916794
OFFSET
0,2
LINKS
FORMULA
a(n) ~ c * d^n / sqrt(n), where d = 7.21883059750200610514730564495768943165197819880185778427663522275469... and c = 0.300860732623379969554285615234449502629772950943717460278989499...
MATHEMATICA
nmax = 25; Table[SeriesCoefficient[Product[(1+x^k)^(2*n), {k, 1, n}], {x, 0, n}], {n, 0, nmax}]
nmax = 25; Table[SeriesCoefficient[(QPochhammer[-1, x]/2)^(2*n), {x, 0, n}], {n, 0, nmax}]
(* Calculation of constants {d, c}: *) {1/r, Sqrt[Derivative[0, 1][QPochhammer][-1, r*s] / (Pi*r*(Sqrt[s]*Derivative[0, 1][QPochhammer][-1, r*s]^2 + 2*s*Derivative[0, 2][QPochhammer][-1, r*s]))]} /. FindRoot[{4*s == QPochhammer[-1, r*s]^2, 2*r*Sqrt[s]*Derivative[0, 1][QPochhammer][-1, r*s] == 2}, {r, 1/8}, {s, 2}, WorkingPrecision -> 120] (* Vaclav Kotesovec, Oct 03 2023 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Vaclav Kotesovec, May 12 2018
STATUS
approved