login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A243034
Expansion of A(x) = x*F'(x)/(F(x) - F(x)^2), where F(x) = (-1 - sqrt(1-8*x) + sqrt(2 + 2*sqrt(1-8*x) + 8*x))/4.
1
1, 2, 10, 62, 422, 2992, 21736, 160442, 1197798, 9018656, 68355820, 520851212, 3986036204, 30615867128, 235879185188, 1822138940482, 14108173076358, 109454660444336, 850687921793836, 6622072711690452
OFFSET
0,2
LINKS
FORMULA
a(n) = 1 + n*Sum_{m=0..n} ( Sum_{k=1..(n-m)} (binomial(k, n-m-k) * binomial(n+2*k-1, n+k-1))/(n+k))).
G.f.: A(x) = x*F'(x)/(F(x)-F(x)^2), where F(x)/x is g.f. of A186997.
a(n) ~ (3+5*sqrt(3)) * 8^n / (33*sqrt(Pi*n)). - Vaclav Kotesovec, May 31 2014
MATHEMATICA
Table[1+n*Sum[Sum[Binomial[k, n-m-k]*Binomial[n+2*k-1, n+k-1]/(n+k), {k, 1, n-m}], {m, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, May 31 2014 after Vladimir Kruchinin *)
PROG
(Maxima) a(n):=1+n*sum(sum((binomial(k, n-m-k)*binomial(n+2*k-1, n+k-1))/(n+k), k, 1, n-m), m, 0, n);
(PARI) for(n=0, 25, print1(1 + n*sum(m=0, n, sum(k=1, n-m, (binomial(k, n-m-k)*binomial(n+2*k-1, n+k-1))/(n+k))), ", ")) \\ G. C. Greubel, Jun 01 2017
CROSSREFS
Cf. A186997.
Sequence in context: A304443 A379084 A370626 * A107026 A107841 A175936
KEYWORD
nonn
AUTHOR
Vladimir Kruchinin, May 29 2014
STATUS
approved