login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A356343
a(n) = Sum_{k=1..n} binomial(2*n, k) * phi(k), where phi is the Euler totient function.
0
2, 10, 61, 288, 1723, 6524, 37441, 158504, 737019, 2867500, 15200293, 56951428, 291648771, 1141099348, 4686310739, 19016248192, 95307214595, 358297247772, 1748879020425, 6725041736572, 27649247188159, 108460437728204, 522912325647543, 1966622896068784, 8831400010510925
OFFSET
1,1
FORMULA
a(n) ~ 3 * n * 4^n / Pi^2.
MATHEMATICA
Table[Sum[Binomial[2*n, k]*EulerPhi[k], {k, 1, n}], {n, 1, 30}]
PROG
(PARI) a(n) = sum(k=1, n, binomial(2*n, k) * eulerphi(k)); \\ Michel Marcus, Aug 05 2022
CROSSREFS
KEYWORD
nonn
AUTHOR
Vaclav Kotesovec, Aug 04 2022
STATUS
approved