OFFSET
0,2
LINKS
G. C. Greubel, Table of n, a(n) for n = 0..400
INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 545
FORMULA
E.g.f.: 1/(-1+2*x)/(-1+x^2).
Recurrence: {a(0)=1, a(1)=2, a(2)=10, (12+2*n^3+12*n^2+22*n)*a(n) +(-n^2-5*n-6)*a(n+1) +(-2*n-6)*a(n+2) +a(n+3)=0}.
a(n) = (4/3*2^n+Sum_(-1/6*(2+_alpha)*_alpha^(-1-n), _alpha=RootOf(-1+_Z^2)))*n!
a(n) = (4*2^n-1)/3*n! if n is even, a(n) = (4*2^n-2)/3*n! otherwise.
a(n) = n!*A000975(n+1). - R. J. Mathar
MAPLE
spec := [S, {S=Prod(Sequence(Prod(Z, Z)), Sequence(Union(Z, Z)))}, labeled]: seq(combstruct[count](spec, size=n), n=0..20);
MATHEMATICA
With[{nn=20}, CoefficientList[Series[1/((1-2x)(1-x^2)), {x, 0, nn}], x]Range[0, nn]!] (* Harvey P. Dale, Jan 21 2013 *)
PROG
(PARI) x='x+O('x^50); Vec(serlaplace(1/((1-2*x)*(1-x^2)))) \\ G. C. Greubel, Oct 11 2017
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
encyclopedia(AT)pommard.inria.fr, Jan 25 2000
STATUS
approved