login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A052600
Expansion of e.g.f. 1/((1-2*x)*(1-x^2)).
1
1, 2, 10, 60, 504, 5040, 61200, 856800, 13749120, 247484160, 4953312000, 108972864000, 2615827737600, 68011521177600, 1904409771264000, 57132293137920000, 1828254303203328000, 62160646308913152000
OFFSET
0,2
LINKS
FORMULA
E.g.f.: 1/(-1+2*x)/(-1+x^2).
Recurrence: {a(0)=1, a(1)=2, a(2)=10, (12+2*n^3+12*n^2+22*n)*a(n) +(-n^2-5*n-6)*a(n+1) +(-2*n-6)*a(n+2) +a(n+3)=0}.
a(n) = (4/3*2^n+Sum_(-1/6*(2+_alpha)*_alpha^(-1-n), _alpha=RootOf(-1+_Z^2)))*n!
a(n) = (4*2^n-1)/3*n! if n is even, a(n) = (4*2^n-2)/3*n! otherwise.
a(n) = n!*A000975(n+1). - R. J. Mathar
MAPLE
spec := [S, {S=Prod(Sequence(Prod(Z, Z)), Sequence(Union(Z, Z)))}, labeled]: seq(combstruct[count](spec, size=n), n=0..20);
MATHEMATICA
With[{nn=20}, CoefficientList[Series[1/((1-2x)(1-x^2)), {x, 0, nn}], x]Range[0, nn]!] (* Harvey P. Dale, Jan 21 2013 *)
PROG
(PARI) x='x+O('x^50); Vec(serlaplace(1/((1-2*x)*(1-x^2)))) \\ G. C. Greubel, Oct 11 2017
CROSSREFS
Cf. A000975.
Sequence in context: A290446 A350225 A277472 * A183958 A356343 A352277
KEYWORD
easy,nonn
AUTHOR
encyclopedia(AT)pommard.inria.fr, Jan 25 2000
STATUS
approved