OFFSET
0,2
LINKS
G. C. Greubel, Table of n, a(n) for n = 0..1000
Peter Luschny, Die schwingende Fakultät und Orbitalsysteme, August 2011.
Peter Luschny, Swinging Factorial.
FORMULA
a(n) = Sum_{k=0..n} Sum_{i=k..n} (-1)^(n-i)*binomial(n-k,n-i)*(2i)$, where i$ denotes the swinging factorial of i (A056040).
Conjecture: a(n) = Sum_{k=0..n} (-1)^(n-k)*binomial(n+1,k)*binomial(2*k,k). - Werner Schulte, Nov 17 2015
MAPLE
swing := proc(n) option remember; if n = 0 then 1 elif
irem(n, 2) = 1 then swing(n-1)*n else 4*swing(n-1)/n fi end:
a := proc(n) local i, k; add(add((-1)^(n-i)*binomial(n-k, n-i)*swing(2*i), i=k..n), k=0..n) end:
MATHEMATICA
sf[n_] := n!/Quotient[n, 2]!^2; t[n_, k_] := Sum[(-1)^(n - i)*Binomial[n - k, n - i]*sf[2*i], {i, k, n}]; Table[Sum[t[n, k], {k, 0, n}], {n, 0, 50}] (* G. C. Greubel, Aug 04 2017 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Peter Luschny, Aug 05 2009
EXTENSIONS
More terms from Michel Marcus, Nov 24 2015
STATUS
approved