login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A370269
Coefficient of x^n in the expansion of 1/( (1-x) * (1-x^2)^3 )^n.
1
1, 1, 9, 37, 233, 1251, 7461, 43219, 257769, 1534096, 9224259, 55607850, 336885029, 2046705428, 12472585155, 76185639162, 466380345065, 2860318763352, 17571932737128, 108111252582449, 666049600308483, 4108363051479346, 25369393216077370
OFFSET
0,3
FORMULA
a(n) = Sum_{k=0..floor(n/2)} binomial(3*n+k-1,k) * binomial(2*n-2*k-1,n-2*k).
The g.f. exp( Sum_{k>=1} a(k) * x^k/k ) has integer coefficients and equals (1/x) * Series_Reversion( x * (1-x) * (1-x^2)^3 ). See A365878.
PROG
(PARI) a(n, s=2, t=3, u=1) = sum(k=0, n\s, binomial(t*n+k-1, k)*binomial((u+1)*n-s*k-1, n-s*k));
CROSSREFS
Cf. A365878.
Sequence in context: A199894 A232258 A370244 * A026686 A076174 A117085
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Feb 13 2024
STATUS
approved