login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A370271
Coefficient of x^n in the expansion of 1/( (1-x)^3 * (1-x^2)^3 )^n.
1
1, 3, 27, 246, 2379, 23628, 239058, 2450052, 25351755, 264270765, 2771024652, 29194911342, 308813298690, 3277454178144, 34883317836240, 372195546176496, 3979793738688075, 42635773396647054, 457529396858568837, 4917191231017846902, 52917857164300253004
OFFSET
0,2
FORMULA
a(n) = Sum_{k=0..floor(n/2)} binomial(3*n+k-1,k) * binomial(4*n-2*k-1,n-2*k).
The g.f. exp( Sum_{k>=1} a(k) * x^k/k ) has integer coefficients and equals (1/x) * Series_Reversion( x * (1-x)^3 * (1-x^2)^3 ). See A368079.
PROG
(PARI) a(n, s=2, t=3, u=3) = sum(k=0, n\s, binomial(t*n+k-1, k)*binomial((u+1)*n-s*k-1, n-s*k));
CROSSREFS
Cf. A368079.
Sequence in context: A037651 A037770 A037658 * A163474 A235373 A361895
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Feb 13 2024
STATUS
approved