login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A235373
E.g.f. satisfies: A'(x) = A(x)^6 * A(-x)^3 with A(0) = 1.
6
1, 1, 3, 27, 249, 4041, 63243, 1475667, 32699889, 993349521, 28523262483, 1066359584907, 37641671773929, 1670094388871001, 69986872318116123, 3592579308449406147, 174344892287659801569, 10161108739424329621281, 560542564223660451017763, 36558288488418607271489787
OFFSET
0,3
LINKS
FORMULA
E.g.f.: 1/(1 - 2*Series_Reversion( Integral (1 - 4*x^2)^(3/2) dx ))^(1/2).
Limit n->infinity (a(n)/n!)^(1/n) = 32/(3*Pi) = 3.3953054526271... - Vaclav Kotesovec, Jan 29 2014
a(n) ~ n! * 2^(3/10) * (32/(3*Pi))^(n+1/5) / (GAMMA(1/5) * 5^(1/5) * n^(4/5)). - Vaclav Kotesovec, Jan 30 2014
EXAMPLE
E.g.f.: A(x) = 1 + x + 3*x^2/2! + 27*x^3/3! + 249*x^4/4! + 4041*x^5/5! +...
Related series.
A(x)^6 = 1 + 6*x + 48*x^2/2! + 552*x^3/3! + 8064*x^4/4! + 146016*x^5/5! +...
Note that 1 - 1/A(x)^2 is an odd function:
1 - 1/A(x)^2 = 2*x + 24*x^3/3! + 2592*x^5/5! + 768384*x^7/7! +...
where Series_Reversion((1 - 1/A(x)^2)/2) = Integral (1-4*x^2)^(3/2) dx.
MATHEMATICA
CoefficientList[1/(1 - 2*InverseSeries[Series[Integrate[(1 - 4*x^2)^(3/2), x], {x, 0, 20}], x])^(1/2), x] * Range[0, 20]! (* Vaclav Kotesovec, Jan 28 2014 *)
PROG
(PARI) {a(n)=local(A=1); for(i=0, n, A=1+intformal(A^6*subst(A, x, -x)^3 +x*O(x^n) )); n!*polcoeff(A, n)}
for(n=0, 20, print1(a(n), ", "))
(PARI) {a(n)=local(A=1); A=1/(1-2*serreverse(intformal((1-4*x^2 +x*O(x^n))^(3/2))))^(1/2); n!*polcoeff(A, n)}
for(n=0, 25, print1(a(n), ", "))
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Jan 07 2014
STATUS
approved