login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A370620
Coefficient of x^n in the expansion of 1 / (1-x-x^2)^(3*n).
3
1, 3, 27, 255, 2535, 25908, 269667, 2843214, 30264975, 324543495, 3500669172, 37940361660, 412830243735, 4507040972190, 49345845670470, 541602648192480, 5957253066586815, 65650003858745514, 724693081872783375, 8011727857439155500, 88692087094226151300
OFFSET
0,2
FORMULA
a(n) = Sum_{k=0..floor(n/2)} binomial(3*n+k-1,k) * binomial(4*n-k-1,n-2*k).
The g.f. exp( Sum_{k>=1} a(k) * x^k/k ) has integer coefficients and equals (1/x) * Series_Reversion( x * (1-x-x^2)^3 ). See A368963.
MATHEMATICA
a[n_]:=SeriesCoefficient[(1-x-x^2)^(-3*n), {x, 0, n}]; Array[a, 21, 0] (* Stefano Spezia, May 01 2024 *)
PROG
(PARI) a(n, s=2, t=3, u=0) = sum(k=0, n\s, binomial(t*n+k-1, k)*binomial((t-u+1)*n-(s-1)*k-1, n-s*k));
CROSSREFS
KEYWORD
nonn
AUTHOR
Seiichi Manyama, May 01 2024
STATUS
approved