login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A368963
Expansion of (1/x) * Series_Reversion( x * (1-x-x^2)^3 ).
5
1, 3, 18, 130, 1044, 8949, 80201, 742365, 7042215, 68103156, 668913195, 6654654240, 66916523202, 679039933050, 6944796387690, 71512538784330, 740800257667236, 7714659988543299, 80719544259082000, 848155028673449400, 8945940728543188656
OFFSET
0,2
FORMULA
a(n) = (1/(n+1)) * Sum_{k=0..floor(n/2)} binomial(3*n+k+2,k) * binomial(4*n-k+2,n-2*k).
G.f.: B(x)^3, where B(x) is the g.f. of A365182. - Seiichi Manyama, Sep 20 2024
PROG
(PARI) my(N=30, x='x+O('x^N)); Vec(serreverse(x*(1-x-x^2)^3)/x)
(PARI) a(n, s=2, t=3, u=0) = sum(k=0, n\s, binomial(t*(n+1)+k-1, k)*binomial((t+u+1)*(n+1)-(s-1)*k-2, n-s*k))/(n+1);
CROSSREFS
Cf. A365182.
Sequence in context: A291775 A365134 A171805 * A154931 A362704 A047731
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Jan 10 2024
STATUS
approved