login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A370619
Coefficient of x^n in the expansion of ( (1-x) / (1-x-x^2) )^(2*n).
2
1, 0, 4, 6, 44, 120, 610, 2114, 9468, 36384, 155644, 626450, 2638994, 10856924, 45565118, 189579786, 796023260, 3333362040, 14022032560, 58960463548, 248542728364, 1048148750060, 4427187324102, 18712146312998, 79177190666034, 335259593600120, 1420797366753600
OFFSET
0,3
FORMULA
a(n) = Sum_{k=0..floor(n/2)} binomial(2*n+k-1,k) * binomial(n-k-1,n-2*k).
The g.f. exp( Sum_{k>=1} a(k) * x^k/k ) has integer coefficients and equals (1/x) * Series_Reversion( x * (1-x-x^2)^2 / (1-x)^2 ). See A368957.
PROG
(PARI) a(n, s=2, t=2, u=2) = sum(k=0, n\s, binomial(t*n+k-1, k)*binomial((t-u+1)*n-(s-1)*k-1, n-s*k));
CROSSREFS
Cf. A368957.
Sequence in context: A012908 A306842 A284634 * A077100 A012935 A013166
KEYWORD
nonn
AUTHOR
Seiichi Manyama, May 01 2024
STATUS
approved