login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A368957
Expansion of (1/x) * Series_Reversion( x * (1-x^2/(1-x))^2 ).
5
1, 0, 2, 2, 13, 28, 127, 376, 1522, 5210, 20403, 74952, 292313, 1114704, 4371839, 17040586, 67378981, 266402370, 1061919289, 4241539218, 17030430061, 68554148388, 276988107861, 1121954081852, 4557637048543, 18556386241468, 75729621399950
OFFSET
0,3
FORMULA
a(n) = (1/(n+1)) * Sum_{k=0..floor(n/2)} binomial(2*n+k+1,k) * binomial(n-k-1,n-2*k).
D-finite with recurrence 2000*n*(48911424697856946605*n -85862091501967897127)*(2*n+1) *(2*n-1)*(n+1)*a(n) +20*n*(2*n-1) *(9782284939571389321000*n^3 -124853950521493511435497*n^2 +291346534864358121613940*n -174094174192357320452243)*a(n-1) +6*(-1056620466555214160730036*n^5 +5240184994626612582867927*n^4 -10842595636486250859803566*n^3 +12555800263623324081669713*n^2 -8323849827256795107408998*n +2408908212964334471344960)*a(n-2) +(-11765946248792268093670721*n^5 +111908835475719217483707009*n^4 -409273054609037480568616913*n^3 +706828511197147489881004671*n^2 -556026097737885029117618846*n +145005575225258917734060720)*a(n-3) +12*(110108843793156901781209*n^5 -1706708924562157727758594*n^4 +10728825545391547292463142*n^3 -34121900584137543620498771*n^2+54762746448568812780284884*n -35381689886652975706836240)*a(n-4) -36*(3*n-11)*(n-4)*(3*n-13) *(2*n-7)*(36626509829570139536*n -97211536327074911575)*a(n-5)=0. - R. J. Mathar, Jan 25 2024
PROG
(PARI) my(N=30, x='x+O('x^N)); Vec(serreverse(x*(1-x^2/(1-x))^2)/x)
(PARI) a(n, s=2, t=2, u=-2) = sum(k=0, n\s, binomial(t*(n+1)+k-1, k)*binomial((t+u+1)*(n+1)-(s-1)*k-2, n-s*k))/(n+1);
CROSSREFS
Sequence in context: A155915 A173466 A151367 * A057648 A282460 A327930
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Jan 11 2024
STATUS
approved