login
A369011
Expansion of (1/x) * Series_Reversion( x * (1-x^3/(1-x))^2 ).
6
1, 0, 0, 2, 2, 2, 17, 36, 59, 240, 669, 1452, 4538, 13574, 34505, 99816, 299112, 825768, 2364715, 7023466, 20182611, 58327250, 172491553, 505163444, 1476966513, 4370772096, 12924382671, 38149522136, 113266357609, 336894290910, 1001473479313, 2985508193930
OFFSET
0,4
FORMULA
a(n) = (1/(n+1)) * Sum_{k=0..floor(n/3)} binomial(2*n+k+1,k) * binomial(n-2*k-1,n-3*k).
PROG
(PARI) my(N=40, x='x+O('x^N)); Vec(serreverse(x*(1-x^3/(1-x))^2)/x)
(PARI) a(n, s=3, t=2, u=-2) = sum(k=0, n\s, binomial(t*(n+1)+k-1, k)*binomial((t+u+1)*(n+1)-(s-1)*k-2, n-s*k))/(n+1);
CROSSREFS
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Jan 11 2024
STATUS
approved