login
A369008
a(n) = A085731(n) / A003557(n).
3
1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 3, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 3, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1
OFFSET
1,4
LINKS
FORMULA
Multiplicative with a(p^e) = p if p|e, otherwise a(p^e) = 1.
For n > 1, a(n) = A342001(n) / A083345(n).
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = Product_{p prime} ((p^(p+1) + p^2 - 3*p +1)/(p*(p^p-1))) = 1.22775972725472961826... . - Amiram Eldar, Jan 20 2024
MATHEMATICA
f[p_, e_] := If[Divisible[e, p], p, 1]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Jan 20 2024 *)
PROG
(PARI)
A003415(n) = if(n<=1, 0, my(f=factor(n)); n*sum(i=1, #f~, f[i, 2]/f[i, 1]));
A003557(n) = (n/factorback(factorint(n)[, 1]));
A369008(n) = { my(u=A003415(n)); (gcd(n, u)/A003557(n)); };
(PARI) A369008(n) = if(1==n, n, my(f=factor(n)); for(i=1, #f~, if((f[i, 2]%f[i, 1]), f[i, 1] = 1, f[i, 2] = 1)); factorback(f));
CROSSREFS
Cf. A342090 (positions of terms > 1).
Sequence in context: A335078 A086597 A322320 * A238015 A257679 A056059
KEYWORD
nonn,mult
AUTHOR
Antti Karttunen, Jan 15 2024
STATUS
approved