OFFSET
1,14
LINKS
Antti Karttunen, Table of n, a(n) for n = 1..10000
EXAMPLE
n=14, binomial(14,7) = 3432 = 8*3*11*13. The largest square divisor is 4, squarefree part is 858. So a(14) = gcd(4,858) = 2.
MATHEMATICA
Table[GCD[First@ Select[Reverse@ Divisors@ #, IntegerQ@ Sqrt@ # &], Times @@ Power @@@ Map[{#1, Mod[#2, 2]} & @@ # &, FactorInteger@ #]] &@ Binomial[n, Floor[n/2]], {n, 80}] (* Michael De Vlieger, Feb 18 2017, after Zak Seidov at A007913 *)
PROG
(PARI)
A001405(n) = binomial(n, n\2);
A055229(n) = { my(c=core(n)); gcd(c, n/c); } \\ Charles R Greathouse IV, Nov 20 2012
(Python)
from sympy import binomial, gcd
from sympy.ntheory.factor_ import core
def a001405(n): return binomial(n, n//2)
def a055229(n):
c = core(n)
return gcd(c, n//c)
def a(n): return a055229(a001405(n))
print([a(n) for n in range(1, 151)]) # Indranil Ghosh, Jul 20 2017
CROSSREFS
A056201 is the cube of this sequence.
KEYWORD
nonn
AUTHOR
Labos Elemer, Jul 26 2000
EXTENSIONS
Formula clarified by Antti Karttunen, Jul 20 2017
STATUS
approved