login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A355915
Number of ways to write n as a sum of numbers of the form 2^r * 3^s, where r and s are >= 0, and no summand divides another.
2
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 2, 1, 1, 1, 1, 1, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 3, 1, 1, 1, 2, 1, 1, 1, 2, 2, 1, 1, 1, 2, 1, 1, 3, 2, 2, 1, 1, 2, 2, 1, 2, 2, 1, 2, 1, 1, 2, 1, 1, 2, 2, 1, 3, 1, 2, 2, 3, 1, 2, 1, 2, 2, 2, 1, 3, 3, 2, 1
OFFSET
1,11
COMMENTS
It is a theorem of Erdos [Erdős] that this representation is always possible.
Without the divisibility constraint the answer is A062051.
See A356792 for when k first appears.
LINKS
Michael S. Branicky, Python Program
William Lowell Putman Mathematical Competition, Number 66, 2005, Problem A-1.
EXAMPLE
Illustration of initial terms:
1 = 2^0
2 = 2^1
3 = 3^1
4 = 2^2
5 = 2+3
6 = 2*3
7 = 2^2+3
8 = 2^3
9 = 3^2
10 = 2^2 + 2*3
11 = 2+3^2 = 2^3+3 (this is the first time there are 2 solutions)
12 = 2^2*3
13 = 2^2+3^2
14 = 2^3+2*3
...
PROG
(Python) # see linked program
CROSSREFS
Sequence in context: A238015 A257679 A056059 * A357900 A357732 A356428
KEYWORD
nonn
AUTHOR
EXTENSIONS
More than the usual number of terms are shown, to distinguish this from similar sequences.
STATUS
approved