login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Coefficient of x^n in the expansion of ( (1-x) / (1-x-x^2) )^(2*n).
2

%I #11 May 01 2024 08:59:41

%S 1,0,4,6,44,120,610,2114,9468,36384,155644,626450,2638994,10856924,

%T 45565118,189579786,796023260,3333362040,14022032560,58960463548,

%U 248542728364,1048148750060,4427187324102,18712146312998,79177190666034,335259593600120,1420797366753600

%N Coefficient of x^n in the expansion of ( (1-x) / (1-x-x^2) )^(2*n).

%F a(n) = Sum_{k=0..floor(n/2)} binomial(2*n+k-1,k) * binomial(n-k-1,n-2*k).

%F The g.f. exp( Sum_{k>=1} a(k) * x^k/k ) has integer coefficients and equals (1/x) * Series_Reversion( x * (1-x-x^2)^2 / (1-x)^2 ). See A368957.

%o (PARI) a(n, s=2, t=2, u=2) = sum(k=0, n\s, binomial(t*n+k-1, k)*binomial((t-u+1)*n-(s-1)*k-1, n-s*k));

%Y Cf. A370617, A370618.

%Y Cf. A368957.

%K nonn

%O 0,3

%A _Seiichi Manyama_, May 01 2024