OFFSET
0,3
FORMULA
a(n) = Sum_{k=0..floor(n/2)} binomial(3*n+k-1,k) * binomial(n-k-1,n-2*k).
The g.f. exp( Sum_{k>=1} a(k) * x^k/k ) has integer coefficients and equals (1/x) * Series_Reversion( x * (1-x-x^2)^3 / (1-x)^3 ). See A369013.
MATHEMATICA
a[n_]:=SeriesCoefficient[((1-x)/(1-x-x^2))^(3n), {x, 0, n}]; Array[a, 25, 0] (* Stefano Spezia, May 01 2024 *)
PROG
(PARI) a(n, s=2, t=3, u=3) = sum(k=0, n\s, binomial(t*n+k-1, k)*binomial((t-u+1)*n-(s-1)*k-1, n-s*k));
CROSSREFS
KEYWORD
nonn
AUTHOR
Seiichi Manyama, May 01 2024
STATUS
approved