The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A235374 E.g.f. satisfies: A'(x) = A(x)^6 * A(-x)^4 with A(0) = 1. 6
 1, 1, 2, 14, 88, 1096, 11792, 209744, 3211648, 74050816, 1474533632, 41710490624, 1023774788608, 34285617473536, 1001167232079872, 38715438665007104, 1311494550010298368, 57488503079879213056, 2217017970860729434112, 108599775372146808848384 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 LINKS Vaclav Kotesovec, Table of n, a(n) for n = 0..390 Vaclav Kotesovec, Recurrence (of order 8) FORMULA E.g.f.: 1/(1 - Series_Reversion( Integral (1-x^2)^4 dx )). a(n) ~ n! * 2^(4/5) * (315/128)^(n+1/5) / (Gamma(1/5) * 5^(1/5) * n^(4/5)). - Vaclav Kotesovec, Jan 29 2014 EXAMPLE E.g.f.: A(x) = 1 + x + 2*x^2/2! + 14*x^3/3! + 88*x^4/4! + 1096*x^5/5! +... Related series. A(x)^6 = 1 + 6*x + 42*x^2/2! + 384*x^3/3! + 4368*x^4/4! + 60096*x^5/5! +... Note that 1 - 1/A(x) is an odd function: 1 - 1/A(x) = x + 8*x^3/3! + 496*x^5/5! + 81728*x^7/7! +... where Series_Reversion(1 - 1/A(x)) = Integral (1-x^2)^4 dx. MATHEMATICA CoefficientList[1/(1 - InverseSeries[Series[Integrate[(1-x^2)^4, x], {x, 0, 20}], x]), x] * Range[0, 20]! (* Vaclav Kotesovec, Jan 28 2014 *) PROG (PARI) {a(n)=local(A=1); for(i=0, n, A=1+intformal(A^6*subst(A, x, -x)^4 +x*O(x^n) )); n!*polcoeff(A, n)} for(n=0, 20, print1(a(n), ", ")) (PARI) {a(n)=local(A=1); A=1/(1-serreverse(intformal((1-x^2 +x*O(x^n))^4))); n!*polcoeff(A, n)} for(n=0, 25, print1(a(n), ", ")) CROSSREFS Cf. A235370, A235371, A235372, A235373. Sequence in context: A162478 A348615 A189392 * A065892 A139183 A174705 Adjacent sequences: A235371 A235372 A235373 * A235375 A235376 A235377 KEYWORD nonn AUTHOR Paul D. Hanna, Jan 07 2014 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 25 16:30 EDT 2024. Contains 372801 sequences. (Running on oeis4.)