login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A370270
Coefficient of x^n in the expansion of 1/( (1-x)^2 * (1-x^2)^3 )^n.
1
1, 2, 16, 110, 840, 6502, 51424, 411602, 3326600, 27082460, 221776016, 1824750424, 15073212648, 124926064460, 1038330110400, 8651387371360, 72238476287112, 604327981885262, 5064140053702240, 42500097815152940, 357157266768270840, 3005093769261481238
OFFSET
0,2
FORMULA
a(n) = Sum_{k=0..floor(n/2)} binomial(3*n+k-1,k) * binomial(3*n-2*k-1,n-2*k).
The g.f. exp( Sum_{k>=1} a(k) * x^k/k ) has integer coefficients and equals (1/x) * Series_Reversion( x * (1-x)^2 * (1-x^2)^3 ). See A365879.
PROG
(PARI) a(n, s=2, t=3, u=2) = sum(k=0, n\s, binomial(t*n+k-1, k)*binomial((u+1)*n-s*k-1, n-s*k));
CROSSREFS
Cf. A365879.
Sequence in context: A301940 A359758 A370245 * A058121 A117627 A117628
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Feb 13 2024
STATUS
approved