login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Coefficient of x^n in the expansion of 1/( (1-x) * (1-x^2)^3 )^n.
1

%I #8 Feb 14 2024 10:48:50

%S 1,1,9,37,233,1251,7461,43219,257769,1534096,9224259,55607850,

%T 336885029,2046705428,12472585155,76185639162,466380345065,

%U 2860318763352,17571932737128,108111252582449,666049600308483,4108363051479346,25369393216077370

%N Coefficient of x^n in the expansion of 1/( (1-x) * (1-x^2)^3 )^n.

%F a(n) = Sum_{k=0..floor(n/2)} binomial(3*n+k-1,k) * binomial(2*n-2*k-1,n-2*k).

%F The g.f. exp( Sum_{k>=1} a(k) * x^k/k ) has integer coefficients and equals (1/x) * Series_Reversion( x * (1-x) * (1-x^2)^3 ). See A365878.

%o (PARI) a(n, s=2, t=3, u=1) = sum(k=0, n\s, binomial(t*n+k-1, k)*binomial((u+1)*n-s*k-1, n-s*k));

%Y Cf. A348410, A370103.

%Y Cf. A365878.

%K nonn

%O 0,3

%A _Seiichi Manyama_, Feb 13 2024