The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A076174 Numerator of sum( i+j+k = n, (i*j)/k) i,j,k >=1. 3
 0, 0, 1, 9, 37, 319, 743, 2509, 2761, 32891, 35201, 485333, 511073, 535097, 1115239, 19679783, 6786821, 133033679, 136913555, 140608675, 144135835, 678544345, 693417203, 17692378667, 18035598467, 165294957803, 168163294703 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,4 COMMENTS a(n) is odd. a(n+2) = Numerators of 4th-order harmonic numbers (defined by Conway and Guy, 1996). - Alexander Adamchuk, Jun 14 2008 REFERENCES J. H. Conway and R. K. Guy, The Book of Numbers, New York: Springer-Verlag, pp. 143 and 258-259, 1996. LINKS Alexander Adamchuk, Jun 14 2008, Table of n, a(n) for n = 1..52 FORMULA a(n) = Numerator[Sum[ Sum[ Sum[ Sum[ 1/k, {k,1,l} ], {l,1,m} ], {m,1,n} ], {n,1,s-2} ] ]. a(n) = Numerator[ (n-1)n(n+1)/6 * Sum[ 1/k, {k,4,n+1} ] ]. - Alexander Adamchuk, Jun 14 2008 a(n) = Numerator(sum(1/(k+3), k=1..n-2)), n>1. - Gary Detlefs, Sep 14 2011 MATHEMATICA Table[ Numerator[Sum[ Sum[ Sum[ Sum[ 1/k, {k, 1, l} ], {l, 1, m} ], {m, 1, n} ], {n, 1, s-2} ] ], {s, 1, 52} ] Table[ Numerator[ (n-1)n(n+1)/6 * Sum[ 1/k, {k, 4, n+1} ] ], {n, 1, 50}] (* Alexander Adamchuk, Jun 14 2008 *) PROG (PARI) a(n)=numerator(sum(i=1, n, sum(j=1, n, sum(k=1, n, if(n-i-j-k, 0, 1)*i*j/k)))) CROSSREFS Cf. A076175. Cf. A124837 = Numerators of third-order harmonic numbers (defined by Conway and Guy, 1996). Sequence in context: A370244 A370269 A026686 * A117085 A120780 A071229 Adjacent sequences: A076171 A076172 A076173 * A076175 A076176 A076177 KEYWORD frac,nonn AUTHOR Benoit Cloitre, Nov 01 2002 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified August 10 19:20 EDT 2024. Contains 375058 sequences. (Running on oeis4.)