login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A124837
Numerators of third-order harmonic numbers (defined by Conway and Guy, 1996).
10
1, 7, 47, 57, 459, 341, 3349, 3601, 42131, 44441, 605453, 631193, 655217, 1355479, 23763863, 24444543, 476698557, 162779395, 166474515, 34000335, 265842403, 812400067, 20666950267, 21010170067, 192066102203, 194934439103
OFFSET
1,2
COMMENTS
Denominators are A124838. All fractions reduced. Thanks to Jonathan Sondow for verifying these calculations. He suggests that the equivalent definition in terms of first order harmonic numbers may be computationally simpler. We are happy with the description of A027612 Numerator of 1/n + 2/(n-1) + 3/(n-2) + ... + (n-1)/2 + n, but baffled by the description of A027611.
From Alexander Adamchuk, Nov 11 2006: (Start)
a(n) is the numerator of H(n, (3)) = Sum_{m=1..n} Sum_{k=1..m} HarmonicNumber(k).
Denominators are listed in A124838.
p divides a(p-5) for prime p > 5.
Primes are listed in A129880.
Numbers k such that a(k) is prime are listed in A129881. (End)
REFERENCES
J. H. Conway and R. K. Guy, The Book of Numbers, New York: Springer-Verlag, pp. 143 and 258-259, 1996.
LINKS
Eric Weisstein's World of Mathematics, Harmonic Number. See equation for third order harmonic numbers.
FORMULA
A124837(n)/A124838(n) = Sum{i=1..n} A027612(n)/A027611(n+1).
From Alexander Adamchuk, Nov 11 2006: (Start)
a(n) = numerator(Sum_{m=1..n} Sum_{l=1..m} Sum_{k=1..l} 1/k).
a(n) = numerator(((n+2)!/(2!*n!)) * Sum_{k=3..n+2} 1/k).
a(n) = numerator(((n+2)*(n+1)/2) * Sum_{k=3..n+2} 1/k). (End)
a(n) = numerator(Sum_{k=0..n-1} (-1)^k*binomial(-3,k)/(n-k)). - Gary Detlefs, Jul 18 2011
a(n) = A213998(n+2,n-1). - Reinhard Zumkeller, Jul 03 2012
EXAMPLE
a(1) = 1 = numerator of 1/1.
a(2) = 7 = numerator of 1/1 + 5/2 = 7/2.
a(3) = 47 = numerator of 7/2 + 13/3 = 47/6.
a(4) = 57 = numerator of 47/6 + 77/12 = 57/4.
a(5) = 549 = numerator of 57/4 + 87/10 = 549/20.
a(6) = 341 = numerator of 549/20 + 223/20 = 341/10
a(7) = 3349 = numerator of 341/10 + 481/35 = 3349/70.
a(8) = 88327 = numerator of 3349/70 + 4609/280 = 88327/1260.
a(9) = 3844 = numerator of 88327/1260 + 4861/252 = 3844/45.
a(10) = 54251 = numerator of 3844/45 + 55991/2520 = 54251/504, or, untelescoping:
a(10) = 54251 = numerator of 1/1 + 5/2 + 13/3 + 77/12 + 87/10 + 223/20 + 481/35 + 4609/252 + 4861/252 + 55991/2520 = 54251/504.
MATHEMATICA
Table[Numerator[(n+2)!/2!/n!*Sum[1/k, {k, 3, n+2}]], {n, 1, 30}] (* Alexander Adamchuk, Nov 11 2006 *)
PROG
(Haskell)
a124837 n = a213998 (n + 2) (n - 1) -- Reinhard Zumkeller, Jul 03 2012
KEYWORD
easy,frac,nonn
AUTHOR
Jonathan Vos Post, Nov 10 2006
EXTENSIONS
Corrected and extended by Alexander Adamchuk, Nov 11 2006
STATUS
approved